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Supplementary Note 1: Machine Learning training
Note that all calculations described in this section were performed after relaxing the Molecular Dynamics (MD)

snapshots (see Methods section for details).

Support Vector Machine
Given a set of data points xi and corresponding labels yi with two possible classes (±1), the Support Vector Machine1–3

(SVM) classifier finds the hyperplane of the form w.x − b = 0 that best separates these two classes, where w and b are
the parameters that define this plane. Because data is often not perfectly separable by a hyperplane we have employed
a soft-margin SVM, where data points on the wrong side of the hyperplane are penalized not but forbidden. In practice,
this is done by performing the following minimization:

min
w,b,ξ

[
1
2‖w‖

2 + C

n∑
i=1

ξi

]
(1)

subject to the constraint yi(w · xi − b) ≥ 1− ξi for i = 1, 2, . . . , n and ξi ≥ 0. The parameters ξi control how far from the
hyperplane are the misclassified examples, and C is the penalty term of the classification error.

Hyperparameter tuning
The set of radial structure functions4,5 Gi(r) used as the local-structure fingerprint was selected based on a hyper-

parameter tuning procedure using grid search6. The hyperparameters optimized were σ, the radius cutoff for neighbors
considered in the calculation (rcut), and the separation ∆r between the r values employed. Using a SVM with no kernel
(also known as linear SVM) and a penalty parameter of C = 1.0 we trained classifiers using random sets of 2, 000 examples
and evaluated the accuracy of each classifier using a separate test set of 10, 000 data points. The data was extracted from
the crystal growth simulations at 1500K.

Supplementary Figure∗ 1a shows the grid-search results for the maximum value of r considered (rmax) and different
values of ∆r. In practice we have chosen rcut = rmax + 2σ. Shown in Supplementary Figure 1b is the grid-search results
for σ, the accuracy of the highest-complexity model considered is also shown for comparison. The chosen values of the
hyperparameters are: σ = 0.5 Å, ∆r = 0.40 Å, and rcut = 10.8 Å (or, equivalently, rmax = 10.0 Å), colored in black in
Supplementary Figure 1.

(a) (b)

Supplementary Figure 1: Grid-search hyperparameter tuning for model feature selection. (a) Accuracy of models with varying
rmax and ∆r for σ = 0.5 Å. The chosen model has ∆r = 0.40 Å (black circles) and rmax = 10 Å (vertical dashed line). (b) Accuracy
of models with different values of σ. Blue squares show the accuracy of the highest-complexity model considered (i.e. largest number
of features) for comparison. Red circles show the accuracy of the chosen values of ∆r and rmax for different values of σ.

The improvement of classification accuracy with the use of kernels was negligible and agreed within the error bars with
the accuracy of linear SVM (i.e. no kernel SVM). The statistical origins of this result (as explained in refs. 8 and 9) is
that the dimensionality of the data (number of features) was enough that the separating hyperplane with kernel SVM was
∗Unless otherwise noted, all figures were created using matplotlib7.
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a very smooth surface. The physical origins of this result (as explained in refs. 5 and 10) is that once enough information
about the local structure is provided in the form of a number of features the discrimination between different structures
becomes easy to perform with linear algorithms. It is shown in ref. 10 that even the use of artificial neural networks does
not improve the accuracy of the classification task. In fact, ref. 10 shows that even very rudimentary features can be
employed as long as enough of them are provided in order to describe the local structure adequately.

Learning and validation curves
The classification error penalty parameter C (Supplementary Equation (1)) was found by using a grid-search algorithm.

For each value of C ∈ [10−3, 10+5] a five-fold cross-validation procedure was performed in a random set of 12, 500 data
points. The validation curve for C is shown in Supplementary Figure 2a, where we see that the accuracy of the models
are independent of C for a wide range of values. Thus, for all results presented in the paper we pick C = 1.0, shown as
the dashed line in Supplementary Figure 2a.

(a) (b)

Supplementary Figure 2: (a) Validation curve for SVM parameter C. Dashed line (C = 1.0) marks the value employed in
calculations discussed in the paper. Error bars were computed using a five-fold cross-validation procedure. (b) Learning curve with
error bars computed using a five-fold cross-validation procedure.

The size of the training set was determined by computing the learning curve (with C = 1.0), as shown in Supplementary
Figure 2b. The error bars were computed using five-fold cross validation. From Supplementary Figure 2b we see that a
training set consisting of a few thousand data points is enough to bring the accuracy of the model close to the plateau in
this curve. Because of the abundance of data points available we pick a training set size of 10, 000 to train the classifiers.
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Supplementary Note 2: Labeling
The labeling of the data consists in determining whether atoms are in the bulk liquid, bulk crystal, or currently

undergoing crystallization (i.e. close to the activated state at the top of the energy barrier in Fig. 2a in the paper). In
order to determine the atoms’ label we have used the time-evolution of the αi(t) parameter11, as described below. Notice
that all calculations described in this section were performed after relaxing the MD snapshots (see Methods section for
more details).

The αi(t) parameter
Consider the Nb(i) first neighbors of the ith atom in the system. In practice we have considered as first neighbors

all atoms within 3 Å of the ith atom. The distance of 3 Å was selected based on the radial distribution function of the
bulk liquid and bulk solid phases: 3 Å is the first minimum of the radial distribution function of the bulk liquid phase, as
shown in Supplementary Figure 3.

(a) (b)

Supplementary Figure 3: (a) Radial distribution function for liquid silicon. The dashed line marks the cutoff radius of 3.0 Å (i.e.
the first minimum of the curve) for the calculation of αi(t). (b) Radial distribution function for crystalline silicon. The sharp peaks
are a result of the system relaxation performed before computing structural properties.

For every atom i we have computed the scalars:

q`m(i) = 1
Nb(i)

Nb(i)∑
j=1

Y m` (θij , φij),

where Y m` (θij , φij) are spherical harmonics, θij is the polar angle between the pair of atoms i and j, and φij is the
azimuthal angle between the pair of atoms i and j. With these values we constructed the following vector for each atom:

q̄`(i) =
[
q`−`(i), q`−(`−1)(i), . . . , q`(`−1)(i), q``(i)

]
,

and finally the vector q`(i) was built by normalizing q̄`(i):

q`(i) = q̄`(i)√
q̄∗` (i) · q̄`(i)

.

Vector q`(i) can be seen as a descriptor of the structure of the first neighbors of atom i. Thus, if q`(i) and q`(j) are
aligned with each other the structure surrounding atoms i and j are similar, as we would expect in a crystal. Hence, if j
is a first neighbor of i then for q`(i) · q∗` (j) ≥ qcut we say atoms i and j have a “crystal-like” bond.

In order to determine the spherical harmonics degree ` to be used in the calculation of q`(i) we have analyzed the
density distribution of q`(i) ·q∗` (j) for liquid and solid phases for ` = 1, 2, . . . , 10. From the density distribution it became
clear that ` = 6 and ` = 7 have liquid and solid density distributions that overlap the least, with ` = 6 being slightly
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better. Thus, we have chosen to employ ` = 6 in our calculations with a cutoff value of qcut = 0.80. This choice of
parameters identified crystal atoms with 100% accuracy, while liquid atoms were identified with accuracy better than
99.5% for all temperatures from 1200K to 1500K.

Finally, for an atom i in a MD snapshot at time t the parameter11 αi(t) is the fraction of its Nb(i) first neighbors with
q`(i) · q∗` (j) ≥ qcut, i.e. αi(t) is the fraction of “crystal-like” bonds made by atom i at time t.

Encoding the dynamics
The time evolution of αi(t) is used to label the state of the atom (liquid, crystal, or crystallizing). Figure 4a illustrates

the labeling process described in the Methods section “Encoding atomic dynamics (ML labeling)”. In Supplementary
Figure 4b we show αi(t) and ᾱi(t) for an atom undergoing crystallization at t ≈ 1.5ns during a simulation at T = 1500K.
Figure 4c focus on the time interval around the crystallization event of the same atom. In these figures the curve for
αi(t) is shown in gray, the window average ᾱi(t) is shown in black, and the background is color coded to reflect the states
illustrated in Supplementary Figure 4a.

(a)

(b)

(c)

Supplementary Figure 4: (a) Illustration of the labeling process for the atomic dynamics as described by αi(t). We have taken
τ = 20ps. (b) Representative plot of αi(t) for an atom undergoing crystallization at t ≈ 1.5 ns. The gray line is αi(t) while the
black line is the window average ᾱi(t). Background color represent the label of the atomic state at that time, blue for y = −1
(liquid), green for y = 1 (crystallizing), and red for atoms in the crystal state (used only in the PCA and tSNE analysis). The
horizontal dashed line at αi = 0.25 is used as a threshold for labeling, as described in the text. (c) Same as previous plot, but with
time interval focused around the crystallization event.

Figure 4c indicates that ᾱi(t) does not fluctuate much when the atom is in the liquid state, making it easy to detect
liquid atoms as those with ᾱi(t) ≈ 0. Defining crystallizing atoms is more complicated due to the large fluctuations in
αi(t) during the liquid-to-solid transition. Atoms undergoing crystallization are defined as those atoms within a 20ps
window around the time where ᾱi(t) = 0.25. The window length and the ᾱi(t) threshold are chosen in conjunction, with
the goal of capturing the moment an atom leaves the liquid state. Ideally, we would like to capture a single time snapshot
at which the atom leaves the liquid state. But, because of the presence of thermal fluctuations this is not possible: the
liquid state (or any other state of the system) is defined as a statistical distribution of configurations (or ensemble), not a
single state. Thus, we choose the window length (20ps) to be small compared to the time it takes for the atom to undergo

5



(a) (b)

Supplementary Figure 5: (a) Two-component tSNE plot showing how the structural features capture the labeling of the crystal-
lization dynamics. Notice that the labels (represented here as colors) were not use by tSNE, since tSNE is a unsupervised method.
The different crystal regions correspond to atoms belonging to a perfect diamond structure and atoms belonging to stacking faults.
(b) Histogram of softness as a function of α. Note that the value of α is discrete because it represents the fraction of crystal-like
bonds.

complete crystallization. Similarly, the ᾱi(t) threshold (0.25) is visually chosen as to capture states just after ᾱi(t) starts
increasing from its ≈ 0 value in the liquid state.

Due to the nature of the thermal fluctuations, it is possible for ᾱi(t) to cross the 0.25 mark many times before reaching
the crystal state. To avoid marking these spurious events as crystallizing events we employ an algorithm that first detects
when ᾱi(t1) = 0.50, and from t1 it backtracks to the last occurrence of ᾱi(t) = 0.25 before t1. Effectively, the algorithm
first detects whether the thermal fluctuations were sufficient to lead the atom to the crystal state and, if successful, it
finds the point where that atom last left the liquid state to join the crystal.

Connections between local-structure and dynamics
A set of 21 radial structure functions were used as local-structure fingerprint xi = [Gi(r1),Gi(r2), . . . ,Gi(r21)]. Now

that we have labeled the atomic dynamics by determining the atomic state (as described in the last section), it is possible
to investigate if the distribution of the local-structure fingerprint xi in this 21-dimensional space (R21) reflects the atomic
dynamics. This can be done with dimensionality reduction techniques such as the t-Distributed Stochastic Neighbor
Embedding2,12,13 (tSNE) method. tSNE’s goal is to generate a faithful representation of the R21-distribution of xi in two
dimensions. This non-linear unsupervised algorithm (i.e. an algorithm that only uses as input the xi vectors) performs
different transformations in different regions of R21 to find a balance between the local and global aspects of the xi
distribution.

In Supplementary Figure 5a we show the tSNE plot for 2, 000 local-structure fingerprint vectors randomly chosen and
equally distributed between the three possible labels (liquid, crystallizing, and crystal). The tSNE plot was generated
with a perplexity value of 200. Before applying the tSNE algorithm we first passed the raw xi vectors through a PCA
(Principal Component Analysis2,6) filter. Only the first 12 PCA components were passed to tSNE because our analysis
indicated that these components explained more than 99% of the variance in the data.

After the tSNE analysis was performed we identified the tSNE output with the dynamic labels computed through the
analysis of αi(t), shown in Supplementary Figure 5a with different colors. It is clear from this figure that the structural
fingerprint xi is capable of discerning between the three atomic state labels. It is also interesting to notice that the crystal
state was further separated into two distinct groups. Such separation into two groups was also observed before, in the
calculation of αi(t) and also in the PCA analysis results shown in Fig. 3b of the paper. The difference between the two
groups can be easily determined (through αi(t), as described in Methods) to be due to the presence of stacking faults in
the system, which change the local structure of atoms inside the defect to hexagonal diamond instead of cubic diamond.
Upon close inspection we also notice that each crystal group (with and without stacking faults) seems to also be separated
into two subgroups. The presence of these subgroups has not been observed in the analysis of the αi(t) parameter or
the PCA analysis (Fig. 3b of the paper), and thus the determination of its structural origin is difficult to perform. Our
hypothesis is that these subgroups exist due to the presence of other structural defects observed in the crystallite, such as
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dislocations (Supplementary Figure 8b) and vacancies.

Correlations between α and softness S: liquid ordering
In the paper we demonstrated that solid-liquid interfaces affect the mobility the nearby liquid atoms during crystal-

lization. The consequences of this change in mobility on the crystallization kinetics are shown to be well captured by
softness (S), and thus we concluded that the observed change in mobility is caused by an associated change in the liquid
structure. In this section we establish that the liquid structure changes in such a way as to become more ordered.

Softness is computed using information about the local structure surrounding the crystallizing atom. It is difficult,
however, to use S to show that the liquid structure becomes more ordered because S also accounts for the local structure
due to the nearby crystal. This occurs because we use information of all neighbors of the crystallizing atom within
rcut = 10.8 Å. However, the parameter α is a purely structural parameter designed to measure the degree of order around
an atom, and it does so by using only information of its first neighbors (i.e. atoms within 3 Å).

In Supplementary Figure 5b we plot the density distribution of S for each value of α for all the crystallizing atoms.
Supplementary Figure 5b shows that S and α are inversely correlated, since an increase in alpha (i.e. an increase in liquid
ordering) leads to smaller values of S. Notice that this is exactly the relationship illustrated in Fig. 8 and explained in
the Discussion section: an increase in IIO is accompanied by a decrease in liquid mobility, which occurs as S decreases.
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Supplementary Note 3: Machine-Learning model physical rationale
Model independence on the training set temperature.

For the local-structure dependent (LSD) model to be physically consistent, it is important that its features and
parameters do not depend on the conditions under which the SVM classifier is trained. This was achieved by two
deliberate choices we made. In Supplementary Note 4 we discuss the first choice: train on data obtained during steady-
state growth conditions. This choice should remove the dependency on the specific time of the simulation at which data
was collected, making the model valid for an arbitrary crystallite growing under steady-state conditions. In this section
we show the implications of the second choice made: training the model on MD snapshots after a brief period of structural
relaxation as described in the Methods section “Crystal growth simulations”. By relaxing the system we are quenching it
into its local inherent structure14, providing a single value of S. This approach curbs the effects of structural distortions
due to thermal fluctuations and it allows us to sample the true (or inherent) local structure of the crystallizing atoms.

To test the independence of the model on the training set temperature we trained SVM classifiers at different temper-
atures, using data sets obtained from simulations at temperatures ranging from 1300K to 1500K in 50K intervals. Each
data set had 2, 500 randomly chosen structural fingerprints (xi) from each class (yi = ±1). Then we tested the accuracy
of each model on a test set consisting of 20, 000 randomly selected data points obtained from a crystal growth simulation
at 1500K. The accuracy of all SVM classifiers were higher than 96%, with a total variation of 0.4%.

The independence of the SVM classifier’s accuracy is a good indicator of the physical consistency of the model. But,
the most rigorous test is to verify if the parameters of the LSD model r(T, S) depend on the training temperature, i.e.
the activation energy ∆Ea(S), the prefactor k0(S), and the interface free energy γ(S). In Supplementary Figure 6 we
show that these three parameters (which uniquely define the model’s dependence on S) can be measured with the SVM
classifier trained at any temperature: the measured values agree with each other within the error bars. These figures can
be compared directly to Figs. 5b, 5c, and 6a of the paper.

(a) (b) (c)

Supplementary Figure 6: Parameters of the local-structure dependent model r(T, S) as computed training the SVM classifier with
data obtained at different temperatures. (a) Activation energy ∆Ea(S). (b) Arrhenius prefactor k0(S). (c) Interface free energy
γ(S). Together these parameters uniquely define the local-structure dependent model. Because they do not depend on the training
set temperature, the r(T, S) model is physically consistent.

Hence, we believe that the final LSD model does have physical reality. The source of this quality comes from including
atomistic information about crystallization mechanisms in creating the r(T, S) model, resulting in a type of model much
different from the fitting of a phenomenological model to the observed data (as it has been the case with the Wilson-Frenkel
model since its inception).

Physical interpretation of the learning process
In the SVM learning process each label yi was characterized by a set of features xi =

[
Gi(r1),Gi(r2), . . . ,Gi(r21)

]
where

Gi(r) =
n(i)∑
j=1

exp
[
− (rij − r)2/2σ2

]
,

with n(i) being the number of neighbors of atom i within a cutoff radius rcut. The functions Gi(r) are known as radial
structure functions and have a clear physical interpretation: Gi(r) counts the number of neighbors of atom i at a distance
r in such way that if a neighbor j is at a distance rij 6= r it will be counted as a fraction of a neighbor, with this fraction
decreasing with |rij − r| and the rate of decrease determined by σ. Thus, there exists an exact relationship4,5,10 between
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Gi(r) and the radial distribution function g(r):

g(r) = lim
σ→0

[
G(r;σ)
ρΩ(r, σ)

]
,

where ρ is the system density, Ω(r, σ) is the volume of a spherical shell of radius r and thickness 2σ, and G(r;σ) = 〈Gi(r;σ)〉,
where the average is taken over all atoms.

In order to gain insight on the learning process of our model5,10 we trained a SVM classifier using small σ and ∆r,
we chose σ = 0.10 Å and ∆r = 0.2 Å. With this fine-grain resolution of the features we trained SVM classifiers using only
one feature at the time, i.e. xi =

[
Gi(rn)

]
, and C = 1.0. In Supplementary Figure 7 we plot the accuracy of each of these

models versus the value of r = rn used as feature, shown as the red line (with values marked on the left vertical axis). We
observe that the accuracy of the features G(rn) is marked by well-defined cycles ranging from the baseline value of 50%
(i.e. not better than random guessing) to remarkable maximum values of up to 75% accuracy for a single feature.

Supplementary Figure 7: Red line is the accuracy of SVM models trained with a single feature G(r) where σ = 0.1 Å, with values
marked on the left axis. Blue line correspond to ∆g(r) = |gc(r)− g`(r)|, i.e. the absolute value of the difference in radial distribution
functions of the crystal and liquid phases. The accuracy of each single feature cycles in synchrony with ∆g(r) up to distances of
15 Å, suggesting that the ML model learns the distinction between liquid atoms and crystallizing atoms through a complicated
assimilation process that takes into account how far the density of neighbors is from the liquid and crystal states.

The origin of this cyclic behavior can be understood by comparing the accuracy dependence on r to the radial
distribution function g(r). The radial distribution function of the crystal gc(r) or the liquid g`(r) do not match the cycles
observed in Supplementary Figure 7. But, their absolute difference ∆g(r) = |gc(r)− g`(r)| seem to cycle in synchrony
with the accuracy, as shown in Supplementary Figure 7 in the blue line (with values marked on the right vertical axis).

Together, the observations above suggest that our ML model learns the distinction between liquid and crystallizing
atoms by measuring how far the density of neighbors is from their mean values in the liquid state. Consequently, if
∆g(rn) = 0 the accuracy of the model trained on feature xi = [Gi(rn)] is the baseline (i.e. random guessing) since there
is no way to distinguish between liquid and crystal at those values of r.

It is also interesting to notice in Supplementary Figure 7 that the accuracy of models trained at distances rn > 3 Å is
as high as 68%, and it is often above 60%. This observation is important because the labeling of the atomic states was
performed using structural information up to 3 Å cutoff. Therefore, Supplementary Figure 7 shows that the ML classifier
is not trivially learning our labeling process, but instead it is assimilating complicated information about the dynamics of
atomic mechanisms taking place at distances as far as 15 Å.

Finally, an analysis of the linear correlation of the features was performed. We computed how much of the variance
in the data is explained by each of the 21 components of the PCA spectrum (one for each dimension of xi), then the
components were ranked by their contribution to the variance. This analysis shows that 99% of the variance is recovered
with the 12 first components, while 90% of variance requires at least seven components, and one component contained
42% of the variance. Given the analysis presented above on ∆g(r) these results are somewhat expected: simple features
like average density will play a big role in classification of structures during a solid-liquid transition. Thus, while some
linear correlation is present, it is far from being a dominant characteristic (such as to allow a much lower dimensional
space to be used), and multidimensional feature vectors are indeed necessary to reproduce the accuracy observed.
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Truncating softness at S = 1.5
In this section we will address some details on how the growth rates as a function of S (shown in Fig. 4b of the paper

for example) are obtained. After the ML approach to decompose the growth rate according to its structural dependence
(as encoded by S) we can compute the softness density distribution of all crystallizing atoms, shown in Supplementary
Figure 8a. This figure shows that atoms with softness values of up to S = 3 can be found, but as we clarify below, softness
values above 1.5 (i.e. beyond the maximum of the distribution) do not correspond to crystallizing atoms. These values of
softness are a reflection of our limitations in devising a perfect algorithm to label the crystallization events (described in
Supplementary Note 2).

(a) (b)

Supplementary Figure 8: (a) Softness density distribution. Notice the abundance of atoms with S > 1.5 (b) Atoms with S > 1.5
all appear inside the crystallite, close to defects such as dislocations (shown as thick solid lines). Hence, these are not crystallizing
atoms and were excluded from the ML analysis. These observations are easier to make by watching the Supplementary Video 6.
This figure was created using OVITO15.

The origin of the S > 1.5 finite density can be seen in Supplementary Figure 8b or, more clearly, in Supplementary
Video 6. In the figure and the video atoms with softness S < 1.5 are not shown, but we left a surface mesh to mark
the boundaries between the liquid and the crystallite. It is clear in the video that while all atoms with S ≈ 1.5 lie on
the crystallite interface with the liquid, the atoms with S > 1.5 all lie inside the crystallite, and therefore they cannot
be crystallizing atoms. In the figure and the video we also performed the DXA (Dislocation Extraction Algorithm16,17)
analysis to find the dislocations inside the crystallite (shown as thick solid lines). It can be observed that the vast majority
of atoms with S > 1.5 lie around these linear defects. From the planar distribution of some S ≈ 3 atoms we also suspect
that they might lie inside grain boundaries.

These observations lead us to truncate the softness distribution density (or equivalently, the growth rate decomposed
into S shown in Fig. 4b of the paper) at S = 1.5. We tested the effect of performing the analysis leading to Figs. 5b, 5c,
and 6a of the paper with the entire softness range S ∈ [−1.5, 3] but the results for ∆Ea(S), k0(S), and γ(S) for S > 1.5
were extremely noisy and had very large error bars, corroborating to our direct observations that S > 1.5 atoms are not
crystallizing.

Local-structure dependent model
The LSD model for the growth rate is given in Equation (2) of the paper:

r(T, S) = k(T, S)
{

1− exp
[
− β∆µ(T, S)

]}
. (2)

It is shown in Fig. 5a of the paper that the kinetic factor has an Arrhenius functional form k(T, S) = k0(S) exp[−β∆Ea(S)].
It is also shown in the paper (Fig. 4a and 7a) that the LSD model is predictive in nature: after training the LSD model
with data from simulations at T ≥ 1388K we were able to correctly predict the temperature dependence of the growth
rate for temperature as low as 1100K. It can also be seen in Fig. 4a that the WF model was not capable of reproducing
the growth rate at temperatures for which it was not fitted to.
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In this section we would like to clarify that the improved performance observed for the LSD model is not simply due
to performing a parameter fitting with an additional parameter, namely softness (S). Consider the following example to
help understand why that is not the case. Suppose that instead of S we had introduced an arbitrary parameter X, i.e.
not derived from ML based on the local structure surrounding crystallizing atoms. The only goal of introducing X is to
improve the fitting of the growth rate observed in the simulations. Assume for simplicity that r(T,X) dependence on X
follows an equation functionally identical to Supplementary Equation (2):

r(T,X) = k0(X)e−β∆Ea(X)
{

1− exp
[
− β∆µ(T,X)

]}
.

According to this approach, for each value of X we would have one value of ∆Ea(X), k0(X), and γ(X). In the article S
takes values from -1.5 to 1.5 in intervals of 0.05. Thus, if we fit r(T,X) in the same interval we would have 60 independent
parameters for ∆Ea(X), k0(X), and γ(X). The result of fitting the 13 points that comprise the growth rate observed in MD
simulations with a function such as r(T,X) (that depends on 180 parameters) will be overfitting. In Supplementary Figure
9 we show the result of such procedure when r(T,X) has 12 distinct values for X: the 13 values of growth rate observed in
the MD simulation are nearly exactly reproduced by r(T,X). Clearly, this is not the case for the LSD model. The reason
for this difference is because the variables introduced by the dependence on S are not independent parameters for fitting:
they are optimally defined using ML to discern the system kinetics based on the local structure. Thus, defining S in this
way introduces many constraints that are not related to the reproducibility of the simulation results for the growth rate.
In fact, adding S had not to necessarily improve the description of the growth rate at all. The fact it did affect suggests
that some fundamental physics of crystal growth was captured by S, thus improving the performance of the model in
reproducing the simulation results. As we argue in the manuscript, S captures the dependence of the thermodynamics
and kinetics of crystal growth on the microstructure (i.e. surface morphology and local liquid structure).

Supplementary Figure 9: The r(T,X) model is functionally identical to the local-structure dependent model r(T, S), but all its
parameters are considered independent and were adjusted to optimally reproduce the simulation results. This demonstrates that
the improved performance of the local-structure dependent model with respect to the WF model is not simply due to performing
a parameter fitting of its functional form with an additional parameter. The variables introduced by the dependence on S are not
independent parameters for fitting: they are optimally defined using ML to discern the system kinetics based on the local structure.
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Supplementary Note 4: Crystallization analysis
During crystal growth the solid-liquid interface temperature is different from the temperature of the bulk liquid (or

thermal reservoir) because of the release of latent heat during crystallization. Under steady-state growth conditions
the solid-liquid interface temperature equilibrates at a specific value determined by the latent heat of the material and
its thermal conductivity. In this section we show how the interface temperature was measured in the crystal growth
simulations and how we identified when crystallization processes had achieved a steady state.

Steady-state growth
In order to determine when the growth process reaches a steady state we define the crystallite effective radius (Reff)

through V = 4πR3
eff/3, where V = NΩ is the total volume of the crystallite, Ω is the volume per atom in the crystal, and

N is the number of atoms in the crystallite. The calculation of N requires a criteria to select which atoms belong to the
crystallite, based on the results of Supplementary Note 2 we define an atom to be in the crystallite if ᾱi(t) ≥ 0.25. This
criteria includes interface atoms as part of the crystallite as well.

In Supplementary Figure 10a we show the time evolution of the crystallite effective radius Reff as a function of time
for simulations at different temperatures†. From this figure we see that the Reff(t) curve for all temperatures seem to
follow the same trend: after an initial equilibration period the curve is approximately linear for a long period, then its
curvature changes as it approaches a plateau when Reff ≈ 110 Å and finally it plateaus at Reff ≈ 130 Å. The plateau itself
only exists because of the finite size of the simulation cell (a cube with 220 Å edges), limiting and eventually stopping all
crystal growth. Next we show that the linear time evolution of Reff(t) marks the period of steady state growth.

(a) (b)

Supplementary Figure 10: (a) Time evolution of the effective radius of the growing crystal. The gray region marks the radius sizes
considered for the calculation of the growth rate: reff ∈ [80 Å, 100 Å]. Inside this range the crystal growth occurs in a steady-state
for all temperatures considered. (b) Interface temperature Tint versus the thermostat bath temperature Tbath (equivalent to the
liquid temperature far from the interface). The solid black line marks Tint = Tbath. The heating of the solid-liquid interface during
steady-state growth is determined by a balance between the release of latent heat and the thermal conductivity of the material.

The steady-state growth condition can be defined in its most general form as when the growth rate is constant
r(t) = constant, i.e., when the number of attaching atoms per unit area of the crystallite interface per unit time is
constant. It can be easily shown that this condition means that Reff(t) varies linearly with time:

dV = Ω dN ⇒ Aeff dReff = Ω dN ⇒ dReff

dt = Ω 1
Aeff

dN
dt ⇒ veff(t) = Ωr(t)

where r(t) = Ṅ(t)/Aeff(t) and veff = Ṙeff(t). Thus

r(t) = constant ⇒ veff(t) = constant ⇒ Reff(t) = veff t+ r0.

In practice we used the simulation snapshots for which Reff ∈ [80 Å, 100 Å] for all the data analysis performed in the
paper and in all Supplementary Information sections. This choice of Reff was conservatively picked from the simulation
†Notice that all geometrical quantities related to the growth rate (such as Reff) are functions of the temperature as well: Reff(t, T ). Here

we conceal this dependency in order to not burden the notation.
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intervals where the crystal growth was in a steady state for all temperatures, as it can be seen in Supplementary Figure
10a. Then, the steady state growth rate r(T ) = 〈r(t)〉∆t, where 〈. . .〉∆t denotes an average over the time interval under
which the growth is in its steady state:

r(T ) =
〈
Ṅ(t)
Aeff(t)

〉
∆t
.

After attributing the S value of each crystalizing atom (i.e. each atom contributing to Ṅ) according to the approach
outlined in the paper we have Ṅ(t,S), which allow us to compute the growth rate dependence on softness:

r(T, S) =
〈
Ṅ(t, S)
Aeff(t)

〉
∆t
.

Notice in the Supplementary Video 1 that during the steady state growth (≈ 1.5 ns to 2.1 ns) the growth mechanism
seems to be visibly an ordered process of islands nucleation on (111) surfaces followed by lateral growth, and also normal
growth of lateral walls formed by stacking steps. This is in sharp contrast to the initial stages of growth (0 ns to ≈ 1 ns),
where we still can see the (111) surfaces but we could not identify the step mechanism through visual inspection.

Interface temperature
For determining the interface temperature we first define interface atoms as all atoms with ᾱi(t) ∈ (0.15, 0.75). This

corresponds to atoms comprising a shell of ≈ 5 Å around the crystal. The reason we did not pick an upper bound higher
than 0.75 was that when stacking fault defects were present the atoms at the defect had ᾱi(t) = 0.75. Thus, using a higher
bound would incorrectly add those atoms to the analysis. Then, for each simulation temperature T the kinetic energy Ki

was measured for all Nint interface atoms in the simulation snapshots for which the crystal growth was in a steady state
(as defined in the last section). The interface temperature was computed through the energy equipartition theorem as:

1
Nint

Nint∑
i=1

Ki = 3kB
2 Tint ⇒ Tint = 2

3kB
1

Nint

Nint∑
i=1

Ki.

Figure 10b shows how Tint varies with the simulation temperature T .
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Supplementary Note 5: Solid and liquid free energies
In Fig. 2c of the paper we show the difference in Gibbs free energy between the liquid and solid phases at zero pressure:

∆G(T, P = 0) = Gliquid(T, P = 0) − Gsolid(T, P = 0). Within the temperature range of the crystal growth simulations
∆G is typically smaller than 0.1 eV/atom. Thus, the solid and liquid free energies must be computed with an accuracy
much better than 0.1 eV/atom in order to be used to describe the variation in growth rate as a function of temperature.

In Methods section “Liquid and solid free energies” we described how the free energy of the liquid and solid phases
were computed using thermodynamic integration methods. In this section we present various methods we have employed
to validate these free energy calculations.

Harmonic and quasi-harmonic approximations
First, let us define the quasi-harmonic approximation18 (QHA) and the harmonic approximation (HA). Consider the

Hamiltonian of a system of N identical particles:

H(r,p) =
N∑
i=1

p2
i

2m + U(r),

where r ≡ {r1, r2, . . . , rN} are the coordinates of the N particles, p ≡ {p1,p2, . . . ,pN} are the momenta of the N particles,
m is the particles’ mass, and U(r) is the many-body potential through which the particles interact with each other. In
the QHA we perform a second-order Taylor expansion of H(r,p) around the equilibrium lattice position of the particles:
r0(T ) ≡ {r0

1(T ), r0
2(T ), . . . r0

N (T )} (the temperature dependence comes from the thermal expansion of the lattice). Thus

H(r,p) ≈
N∑
i=1

p2
i

2m + U
(
r0(T )

)
+

N∑
i=1

N∑
j=1

∑
α=x,y,z

∑
β=x,y,z

mDα,β
i,j (T )
2 (ri,α − r0

i,α)(rj,β − r0
j,β), (3)

with ri,α the α component of ith particle’s position vector ri (α = x, y, or z), and

Dα,β
i,j (T ) ≡ 1

m

(
∂2U

∂ri,α∂rj,β

)
r=r0(T )

the potential energy Hessian matrix’s components (computed here using the finite-differences method19). The equations
of motion of the harmonic system in Supplementary Equation 3 can be uncoupled through a canonical transformation:

H(r,p) ≈
3N∑
n=1

p̃2
n

2m + U
(
r0(T )

)
+

3N∑
n=1

[
1
2mΩ2

n(T )q̃2
n

]
, (4)

where Ωn(T ) are the eigenvalues of D(T ). The Taylor-expanded Hamiltonian, Supplementary Equation (4), is a quadratic
system, hence its free energy can be computed analytically:

Gqha(N,V, T ) = U
(
r0(T )

)
+ kBT

3(N−1)∑
n=1

ln
[
~Ωn(T )
kBT

]
, (5)

where the three null eigenvalues of D(T ) are removed from the summation. Supplementary Equation (5) is the free energy
in the QHA. Notice that in Supplementary Equation (5) the system’s volume V (or, equivalently, r0(T )) is taken to be
the equilibrium volume at temperature T and zero pressure P = 0.

The free energy in the harmonic approximation can be obtained from Supplementary Equation (5) by substituting
Ωn(T ) by Ωn(T = 0):

Gha(N,V, T ) = U
(
r0(T )

)
+ kBT

3(N−1)∑
n=1

ln
[
~Ωn(T = 0)

kBT

]
. (6)

The physical distinction between the QHA and HA is that QHA improves on the HA by incorporating anharmonic effects
due to the thermal expansion of the solid.

In Supplementary Figure 11a we show the solid free energy as computed using different methods and approximations.
We use as reference value the free energy computed within the harmonic approximation. It is clear in this figure that
while the QHA improves on the description of the free energy with respect to the HA, there is a significant difference
between the QHA and the solid free energy with no approximations (as computed by the FL and RS methods). This
discrepancy is caused by anharmonic effects beyond the thermal expansion of the solid, which are expected to be significant
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at temperatures close to the melting point. It is important to note here that the FL and the RS methods both account
for all anharmonic effects20.

When computing the free energy of crystalline solids the HA and the QHA are often used in the literature. These
approximations allow the estimation of the solid free energy with relatively small computational costs. But, as we show
in Supplementary Figure 11a, the accuracy of these methods is not enough to be used in crystal growth studies given that

G(Tm)−Gqha(Tm)
kBTm

≈ 0.12,

where G(T ) is the free energy as computed using the thermodynamic integration methods. This difference results in the
underestimation of the melting temperature by 92K, as shown in Supplementary Figure 11b, which in turn results in the
predicted growth rate to be up to 36% lower than its measured value. Thus, accurately accounting for all anharmonic
effects is critical in crystal growth studies.

Absolute free energies
Figure 11b shows the absolute Gibbs free energy of the liquid and solid phases in the temperature range from 1100K to

2000K. The solid lines were computed using the Reversible Scaling20,21 (RS) method using one of the points (as described
in the Methods section “Liquid and solid free energies”) as initial points for the integration. The remainder of the points
were computed20,22–25 to verify the accuracy of the RS method. The difference between the curves in Supplementary
Figure 11b is ∆G(T, P = 0) = Gliquid(T, P = 0)−Gsolid(T, P = 0), shown in Fig. 2c of the paper.

(a) (b)

Supplementary Figure 11: (a) Difference in free energy with respect to the harmonic approximation. The Reversible Scaling and
the Frenkel-Ladd methods capture the free energy including all anharmonic terms, while the quasi-harmonic approximation only
captures anharmonic effects due to thermal expansion. (b) Absolute free energy curves for the liquid (in blue) and solid (in red)
as computed with different methods. The harmonic and quasi-harmonic approximations (shown in gray) understimate the melting
temperature by 92K. Such understimation results in the predicted growth rate to be up to 36% lower than its measured value.
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Supplementary Note 6: Liquid diffusivity
Calculating the liquid diffusivity

The liquid diffusivity was computed in a MD simulation of 8, 000 atoms in which atoms were randomly distributed in a
cubic simulation cell of dimensions such that the overall density matched that of the equilibrium liquid at that temperature
and zero pressure. Before the beginning of the simulation the atomic coordinates were relaxed at fixed volume by 200
timesteps using the Steepest Descent algorithm19. Then, initial velocities were randomly assigned from a Boltzmann
distribution for the target temperature and the system was equilibrated for 10ps using the Bussi-Donadio-Parrinello26
(BDP) thermostat with a damping parameter of 0.1 ps. After equilibration, the thermostat was removed and the simulation
was run for 100 ps, during which we measured the mean-squared displacement and the velocity autocorrelation function
of all atoms:

[∆r(t)]2 = 1
N

N∑
i=1

[ri(t)− ri(0)]2 and Cv(t) = 1
3N

N∑
i=1

vi(t+ t0) · vi(t0),

as shown in Supplementary Figure 11a and 11b respectively. For the calculation of Cv(t) the 100ps simulation was divided
into 100 intervals of 1 ps and averaged over.

(a) (b)

Supplementary Figure 12: Quantities used in the calculation of the liquid diffusivity. (a) Mean-squared displacement for different
temperatures. (b) Velocity-velocity autocorrelation function used to compute diffusivity.

The diffusivity of the system, shown in Fig. 2b of the paper, was determined27 as

Dmsd = 1
6
∂

∂t

〈
[∆r(t)]2

〉
and Dvacf =

∫ ∞
0

Cv(t) dt,

where Dmsd was computed by first making a linear approximation to [∆r(t)]2. The diffusivity as computed by these
methods agreed within the statistical uncertainty.

Thermostat parameter selection
Because the crystal growth simulations were performed with a thermostat, it is necessary to verify that the chosen

thermostat parameters do no affect the kinetics of the system. The kinetics of the crystal growth process is determined
by the activation energy barrier for diffusion of the liquid in the vicinity of a solid-liquid interface. Thus, we investigate
here how the diffusivity of the liquid depends on the BDP thermostat damping parameter τbdp.

We have performed calculations of the diffusivity of liquid at T = 2000K using the same system and methods de-
scribed above, except that the thermostat was not removed after equilibration (i.e. before measuring the mean-squared
displacement of the atoms). We have computed the diffusivity in the presence of the thermostat for different values of
the thermostat damping parameter τbdp, which controls the effective timescale (or strength) of interaction between the
system and the thermal bath.

Figure 13 shows that the diffusivity of the liquid is robust with respect to τbdp: D(2000K) for all considered values of
τbdp agrees with the value of the diffusivity computed without a thermostat (i.e. in the microcanonical ensemble) within
the error bar. Indeed, the BDP thermostat is known26 to be excellent at reproducing the natural dynamics of the system.
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Supplementary Figure 13: Liquid diffusivity dependence on the thermostat damping parameter τbdp at T = 2000K. The horizontal
dashed line shows the natural liquid diffusivity in the absence of the dynamical perturbations introduced by the thermostat. The
BDP thermostat is shown to be robust in reproducing the kinetics of atoms in the liquid state.
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Supplementary Note 7: Results for Copper
In this section we present a collection of results for copper, all of which have a counterpart plot for silicon that has

been previously discussed in details. Our goals is to make the results obtained in the paper as reproducible as possible.
Note that, differently from silicon, all calculations for copper were performed without relaxing the MD snapshots because
it has been shown that energy minimizations lead to significant crystalization in metallic systems28.

Supplementary Figure 14: Snapshots of crystal growth simulation for copper. See Supplementary Video 7 for the complete video.

Machine Learning: optimization and validation
In Supplementary Figure 15 (the corresponding information for silicon can found in Supplementary Figure 1) we show

the result of the hyperparameter optimization procedure for copper. The final values for the radial structure funtion
parameters for copper are quoted in the Methods section. Notice how rmax is almost twice as large as the value employed
for silicon. We attribute this difference to the well known fact that metals present much wider solid-liquid interfaces than
semiconductors.

(a) (b)

Supplementary Figure 15: Grid-search hyperparameter tuning for model feature selection for copper. (a) Accuracy of models with
varying rmax and ∆r for σ = 0.3 Å. The chosen model has ∆r = 0.50 Å (black circles) and rmax = 20 Å (vertical dashed line). (b)
Accuracy of models with different values of σ. Blue squares show the accuracy of the highest-complexity model considered (i.e.
largest number of features) for comparison. Red circles show the accuracy of the chosen values of ∆r and rmax for different values
of σ.

Figure 16 (the corresponding information for silicon can be found in Supplementary Figure 2) shows the learning and
validation curves for copper. Not much changes with respect to the results from silicon. Even the final classification
accuracy is similar: 97%.

Growth analysis
During the steady-state growth of copper the interface temperature is up to 40K higher than the temperature of the

liquid far from the crystal, as shown in Supplementary Figure 17 (the corresponding information for silicon can be found
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(a) (b)

Supplementary Figure 16: Validations curves for copper. (a) Validation curve for SVM parameter C. Dashed line (C = 1.0)
marks the value employed in calculations discussed in the paper. Error bars were computed using a five-fold cross-validation
procedure. (b) Learning curve with error bars computed using a five-fold cross-validation procedure.

in Supplementary Figure 10b). This is more than twice the result from silicon. This large overheating of the interface is
due to the elevated growth rate of copper, which is up to 10× faster than for silicon as can be seen in Figs. 4a and 7a
from the paper.

Supplementary Figure 17: Interface temperature Tint versus the thermostat bath temperature Tbath (equivalent to the liquid
temperature far from the interface) for copper. The solid black line marks Tint = Tbath.

Solid and liquid free energies
The analysis of the anharmonic effects on solid copper, and the free energies of the solid and liquid phase are shown

in Supplementary Figure 18 (the corresponding information for silicon can be found in Supplementary Figure 11). In
particular, the quasi-harmonic approximation seems to be much more effective for copper than for silicon. Nevertheless,
including all anharmonic effects is still essential to accurately model the growth rate.

Input parameters of the Wilson-Frenkel model
Input parameters for the WF model of copper are shown in Supplementary Figure 19 (the corresponding information

for silicon can be found in Fig. 2b and 2c of the paper). The diffusivity of copper and silicon show similar magnitudes
when plotted against Tm/T , and they also show similar energy barriers for diffusion ∆Ed. However, it is interest to notice
that the crystallization driving force (∆G) for copper decreases half as much with undercooling. This difference certainly
has its origins in the difference in latent heat of fusion of these substances (13 kJ/mol for copper and 51 kJ/mol for silicon).
Nevertheless, it is a curious observation that silicon presents a much larger driving force for crystallization and a much
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(a) (b)

Supplementary Figure 18: Free energy of solid and liquid copper. (a) Difference in free energy with respect to the harmonic
approximation. The Reversible Scaling and the Frenkel-Ladd methods capture the free energy including all anharmonic terms, while
the quasi-harmonic approximation only captures anharmonic effects due to thermal expansion. (b) Absolute free energy curves
for the liquid (in blue) and solid (in red) as computed with different methods. The harmonic and quasi-harmonic approximations
(shown in gray) understimate the melting temperature by ≈ 200K.

lower growth rate. This is made even more intriguing by the fact that the activation energies for the kinetic factor of
copper are much larger, as seen in Figs. 5b and 7b. This apparent conundrum is dispersed by observing that the entropic
contribution for the kinetics of crystallization is many orders of magnitude larger for copper than it is for silicon. This is
attributed mostly to the predominance of rough surfaces in copper that are mainly nonexistent in silicon, which strongly
favors vicinal surfaces, as shown in Fig. 6a. It is slightly disappointing that this peculiar balancing of thermodynamics
and kinetics has its fundamental explanation buried in the intrinsic electronic properties of these two materials.

Local-structure dependent model
Notice that the crystallization kinetic factor for copper is also observed to have Arrhenius behavior k(T, S) =

k0(S) exp[−β∆Ea(S)], shown in Supplementary Figure 19c (the corresponding information for silicon can be found in
Fig. 5a of the paper).
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(a)

(b)

(c)

Supplementary Figure 19: Input parameters of the WF model for copper. The respective results for silicon are shown in Figs. 2b
and 2c of the paper. (a) Arrhenius plot of the liquid diffusivity of copper as a function of temperature. (b) Difference in free energy
between the solid and liquid phases of copper. The solid gray line is a guide to the eye to accentuate deviations from the linear
behavior. (c) Arrhenius plot of the crystallization kinetic factor for copper. Similarly to what was observed with silicon, the kinetic
factor is shown to have functional form: k(T, S) = k0(S) exp[−β∆Ea(S)].
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